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Soit P(z,w) un polynéme en deux variables complexe, qu’on pensera comme

une fonction C? — C. Smt 36 y 5y les dérivées standard (i.e 6% (z7w?) =
az® twb, % (z w ) = bz%w’1). Posons z = x+iy et w = u-+iv avec x,y, u, v €

R; on peut alors voir P aussi comme une fonction (R(P),S(P)) : R* — R? ou
R(P) et I(P) sont respectivement la partie réelle et la partie imaginaire de P.
Pour toute fonctions f, g : R* — R soit alors %(f(x,y,u,v) +ig(z,y,u,v)) =

Af (x,y,u,v) ag(wyuv) smilai 9 9 9
s +i==5] et de facon similaire pour 5y Du> Do

Question 1. Prouver que % (z“wb) = % (% (zawb) — ia% (z“wb)) ,Va,b € N.

En conclure que l'on a %(P) =1 (51 zaay) (P). Prouver aussi que a% (z"w?)+

ia% (zawb) =0,Va,b e N et en déduire que (% + i%) (P)=0

My Solution. Ya,b € N,

lgab_-gab_lg 'ab_-g - Na, b

2<8x(2w) zay(zw)>—2(ax((x+zy)w) zay((m—l—zy)w)
1

(a(z +iy)*tw® — i da(z + iy)* " w®)

(z +iy)* b’ = az* " twd,

hence 2 (P) = 3 (& — i) (P).
By the same calcula‘clon7

1/0 1
3 (8 (zw”) + i3 (z“wb)> =5 (8 ((z +iy) w®) + 5 (= + zy)awb)>

= % (a(z +iy)*"w® + i x ia(x + iy) 1wb) =0,
we get 2 (6‘9 (z wb) +iz, (zawb)) = 0, which means % (% —l—ia%) (P) =0.

Question 2. Prouver que si a— P (zg,wg) # 0 ou %P(zo,wo) # 0 alors
Uapplication (R(P),3(P)) : R* — R? q jacobienne de rang 2 en (2o, wo) .



My Solution. By symmetry, we can assume W.L.O.G. that %P (20, wp) # 0, at
this point the Jacobian of (R(P), I(P)) is
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So this Jacobian is of rank 2.
Question 3. Soit S = {(z,w)|P(z,w) = 0}.
a) Prouwver que S est aussi Haussdorf et a base dénombrable.

b) Prouver que si S ne contient aucun point tel que %P(z, w) = 2 P(z,w) =
0 alors c’est un espace localement homeomorphe ¢ R2.

¢) De plus montrer que si %P (20, wq) # 0 alors la restriction de la pro-
jection m(z,w) = z a S est un homéomorphisme dans un voisinage de
(20, wo).

My Solution.  a) C? is a separable metric space, hence is Hausdorff and has
a countable topology basis. S is a subspace of C? so it is Hausdorff and
has a countable topology basis.

b) If the set {(z,w) € (C2|8%P(z,w) = a%P(z,w) = 0} = 0, then from the
last question the Jacobian of (R(P), I(P)) is always of constant rank 2. So
S is a smooth manifold of dimension dim(C?) —rank(Jb(R(P), J(P))) = 2
and is locally homeomorphic to R2.



c) If 22 P (29, wp) # 0, since the last 2 x 2 minor of Jb (R(P), S(P)| (20,100) 18

|%P(z0, wo)’2 then by inverse function theorem there is an open neigh-
borhood U(xg,yo) of 2o and 3f € C* : U(zo,yo) — R? such that (C is
identified with R?)

S0 (U(xo,yo) x C) = {(z,y,u,v) € Ulxg,yo) x R} P(z,w) = 0}
= {(xvya f(x,y))|(x,y) € U(‘anyO)}
={

(2, f(2)|z € U(zo,0)}

S0 1| st (x0,40)xC) © (2 f(2) = 2 is a homeomorphism.

Question 4. Soit maintenant P(z,w) = w? — 2(2 —1)(2 —2). Montrer que dans
ce cas S satisfait Uhypothése du point 3b).

My Solution. The set of critical points of P is

Crit(P) = {(z,w) € C2|%P(z,w) = %P(z,w) =0}

= {(z,w) €C2|w:3z2—62—220}:{(1i\/?O)}

then easily we can check that Crit NS = . So condition b) in the last question
is satisfied.

Question 5. Fore €]0,1/10[ let C C C be defined by C = B(0,100)\ int (B(0,e)U
B(1,e) U B(2,€)) where B(x,r) is the ball centered in x and of radius r and int
is the interior. Let m, : C?> — C be the projection on the first coordinate coor-
donnée : mi(z,w) = z and let S¢ = SN 7r1_10. Show that m1 : Sc — C is a
covering of C. What is its degree?

My Solution. Fix a (z0,wg) € 71 }(C), consider two maps

{u: zem(C) wz(z—1)(z—2)
v: w€img(u) > w?

and we want to apply the inverse function theorem to w and v. The critical
points set of u is Crit(u) = w1 (Crit(P)) N1 (C) = O and for v we have Crit(v) =
o (Crit(P)) Nimg(u) = {0} Nimg(u) = @. Apply inverse function theorem firstly
to v then to u we can get four smooth homemorphisms

v:Vip—=V v:Vii—=-W
’U,ZU10—>V10 U:U11_>V11

where Vj is an open neighborhood of wg, and Vig = —Vi1,VigNViy = 0,2 €
Uio NUy;. We define U := Uyg N Uny, since P(z,w) = u(z) — v(w) we know
that there are two disjoint components in m; 1(U ) NS¢, separately contained in
UxVyipand U xVy1. Moreover, 7y : (UxVi9)NSc — U and my : (UxVi1)NSe —
U are homeomorphisms. Hence we prove that m; : S¢ — C'is a 2 degree covering
of C.



Question 6. Let ' := SN (B(ie)),i € {0,1,2}. Show that if € is suffi-
ciently small the projection ma : St — C defined by ma(z,w) = w is a homeo-
morphism. Deduce that S* is diffeomorphic to a disc.

My Solution. Let’s fix an i € {0, 1,2} then we have (4,0) € S. If ¢ is small enough
then %P # 0 in S%, so as the proof in 3¢) we can find an open neighborhood
X; of (¢,0) in which 75 is a homeomorphism. Since mo(X;) is a neighborhood of
(i,0) we can set a € such that (B(i,¢)) € ma(X;). And in this case m : S — C
is a homeomorphism onto its image.

St is diffeomorphic to the disk B(i, €) because m2(S%) = B(i, €) and both o
and its inverse are sooth functions.

Question 7. Montrer que Sc est conneze.

My Solution. Sc is locally connected so its connected components are closed
and open. We claim that the image under m; of each component in S¢ is C.
Otherwise if a component A C S¢ satisfies 71 (A4) # C, let O, be the funda-
mental neighborhood of a € 71(8A). Then the part of 77 *(0,) that intersects
A should be contained in A, thus a € 7r1(f°1) since m is a local homeomorphism
and hence we get a contradiction as ANOA = 0. In addition S¢ is a degree 2
covering space, it has at most two components.

Now we assume that Sc has exact two components A7, A>. Then each fiber
{a1,az} of a singleton 71 (a1) = m1(az) in C lies in two components separately
and ma(a1) = —ma(az2). Let’s recall the definition of u: z € C'+— z(z —1)(z — 2),
plotted as Figure [1| and meshed with contour line. We shouldn’t have closed
contour circle in the plot of |u(z)| otherwise if 3p € R*, s.t. {p?e?,0 € R} C
u(C) then (p?,p) and (p?, —p), which should be in two different components,
are connected by path

v [0, 1] — Sc
£ (p2ei2T ] peitTy,
Let m := sup{|u(z)|,z € B(0,2¢) U B(1,2¢) U B(2,2¢)}, M := inf{|u(z)],|z] >
99} then we have m < M and any contour line with value between m and M is
closed in the plot of u(z), so we finally get a contradiction.

Question 8. Montrer que si un espace p : Y — X est un revétement et X
est un CW-complexe, alors Y peut étre muni d’une structure de CW -compleze
telle que chaque cellule de X est l'image par p d’au moins une cellule de Y .
Combien de cellules de chaque dimension a Y?

My Solution. For clarity, let’s recall definitions of some terms. Let K(® be a
discrete set of points. These points are the 0-cells. If K("~1 has been defined,
let {fss} be a collection of maps fss : S ' — K1 where o ranges over
some indexing set. Let W be the disjoint union of copies D} of D", one for
each o, let B be the corresponding union of the boundaries S?~! of these disks,
and put together the maps fa, to produce a map f : B — K (=1 Then define

KM — gh-1) Uy W.
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Figure 2: Attaching map and characteristic map



The map fy, is called the “attaching map” for the cell o.

If K™ has been defined for all integers n > 0, let K = UK(") with the
“weak” topology that specifies that a set is open < its intersection with each
K™ is open in K. (Tt follows that a set is closed < its intersection with each
K™ ig closed.) For each o let f, : D? — K be the canonical map given by the
attaching of the cell 0. This map is called the “characteristic map” of the cell
o. Let K, be the image of f,. See Figure

It is clear that the topology of each K("), and hence of K itself, is character-
ized by the statement that a subset is open (closed) < its inverse image under
each f, is open (closed) < its intersection with each K, is open (closed) in K,
where the topology of the latter is the topology of the quotient of D™ by the
identifications made by the attaching map fs,.

For our proposition, let p : ¥ — X be a covering map and assume that
X is a CW-complex with characteristic maps f, : D" — X. Since D" is
simply connected, each f, lifts to maps fz : D™ — Y which are unique upon
specification of the image of any point. Take the collection of all such liftings
of all f, to define a cell structure on Y. That is to say, in each dimension of
skeleton, there are as n times cells in Y as in X, where n is the degree of this
covering space.

Then the only thing that really needs proving is that Y has the weak topol-
ogy. That is, we must show that a set A C Y is open < each fd_l(A) is
open in the disk which is the domain of f5. The implication = is trivial since
fa is continuous. Thus we must show that if A C Y has each f; 1(A) open,
then A is open. If U ranges over all components of p~*(V) where V ranges
over all connected evenly covered open sets in X, then A = (J(ANU) and
fZHANU) = f71(A) N f51(U). This shows that it suffices to consider the case
in which A C U for some such U. We claim that

FM0(A) = {2 (A)fa alift of fu}

Indeed, if z € f;1(p(A)) then f,(z) = p(a) for some a € A and there exists a
lifting f5 of f, such that fs(z) = a. Thus = € f5'(a) C f;'(A). Conversely,
if © € f;7'(A) then fy(z) = a € Aand so fo(z) = (po fa) (z) = p(a) € p(A),
giving that = € f, 1(p(A)), as claimed. Therefore, if fa_l(A) is open for all &,
then the union above is open and so f; 1 (p(A)) is open for all a. since X has the
weak topology by definition, p(A) is open. But AC U and p: U — p(U) =V
is a homeomorphism by the assumption that U is a component of p~1(V) for
the evenly covered open set V. Therefore, A is open in U and hence in Y.

Question 9. Considérons la structure de CW -compleze de C ayant 8 0-cellules,
12 1-cellules et 2 2-cellules, comme dans la Figure[3 . En appliquant la con-
struction du point précédent, constuire une structure de CW complexe sur Sc.
Combien de 0,1 et 2 -cellules a cette cellularization de S 2 (On pourra utiliser
le théoréme de relévement des applications.)

My Solution. A bit hard to image S as CW-Complex, maybe it is not possible
to be embedded into R?; a plot of $(w) is shown in Figure 4] just as the Klein



Figure 3: Space C'

this projection to &(w) intersects itself. To construct a CW-complex, we use
the lifting method described in previous solution. This lifting is similar to lifting
v/z in complex plane, but I cannot draw it out explicitly. Since each cell of C
is the homeomorph under a 2 degree covering map 7 of a cell in S¢, for each
dimension in S¢ there should be as twice cells as in C'. Thus this cellularization
of S¢ contains 16 0-cells, 24 1-cells and 4 2-cells.

Question 10. Etant donnée une structure de CW -complexe sur un espace
X, ayant un nombre fini de cellules, sa caractéristique d’Buler est x(X) :=
> .(=1)%¢c; ot ¢; est le nombre de cellules de dimension i. Calculer x(C) et

x (Sc).
My Solution. x(C) =8—-12+2 = -2 and x(S¢) = 2x(C) = —4

Question 11. Soit X un CW-compleze fini dont la dimension mazximale des
cellules est 2. Une subdivision de la structure de CW -complexe est une struc-
ture de CW -complexe obtenue de la premiere en appliquant un nombre fini des
modifications suivantes (cf Figure @)

o Subdiviser une I-cellule : Ajouter une 0-cellule au milieuw d’une 1-cellule
et remplacer la 1-cellule par deux 1 -cellules.

o Subdiviser une 2-cellule : Ajouter une 0-cellule au milieu d’une 2-cellule,
des 1-cellules reliant cette 0-cellules a toutes les 0-cellules dans son bord
et remplacer la 2-cellule par des 2-cellules (une par 1-cellule ajoutée).

Montrer que la caractéristique d’Euler d’une subdivision coincide avec la car-
actéristique d’Euler de la structure initiale.



Figure 4: Project Riemann surface S¢ to &(w)

o @ < —o—90

Figure 5: On the top part a subdivision of a 1-cell. On the bottom a subdivision
of a 2-cell whose boundary contains 4 0-cells.
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Figure 6: Represent S? and T? as quotient spaces of unit square

Figure 7: Puncture a hole in the square

My Solution. o After the first operation, we get 1 more 0-cell, 1 more 1-cell,
and others remain unchanged. These changes cancel each other in Euler
characteristic as (¢o + 1) — (e1 + 1) = ¢p — ¢1.

o If we divide a 2-cell with n 0-cells in boundary using the second operation,
we get 1 more 0O-cell, n more 1-cells, n — 1 more 2-cells, and others remain
unchanged. These changes cancel each other in Euler characteristic as
(co+1)=(c14+n—=1)4(ca+n)=cy—c1 + ca.

Question 12. Pour toutn > 0 calculer la caractéristique d’Euler de S?\ (D% U D% u---

et de T?\ (D% UD%UUD%) ou (D%LID% uuD?L) discs sontn > 0 discs

ouverts et disjoints contenus dans S ou T.

My Solution. As Figure @, we represent S? and T2 as quotient spaces of unit
square. Then by counting different vertices and edges after gluing, we have

X(SQ):co—cl+02:3—2+1:2
X(T?)=co—c1+ez=1-2+1=0.

To calculate Euler characteristic of n disks punctured S? or T2, we turn to
consider punctured square, as Figure[7] Add a regular n-polygon in the center of
square, connect each vertex of n-polygon with all vertices of that square. Then

L D2

n



replace vertex in the regular n-polygon with an irregular 6-polygon for which
we delete the interior part. And we color new generated vertices and edges in
purples.

Denote S2 and 772 corresponding n-disks punctured S2 and 772. After iden-
tifying some vertices in square, we calculate

X(S2) =ch — ) +ch = (co+n(—14co+2)) — (c1 +nlco+2)) +co
=B+4n) - (2+5n)+1=2-n

X(T3) = ¢h — €1 + ¢ = (co + (=14 co +2)) = (1 +n(co +2)) + e
=(1+4n)—(2+5n)+1=—n.

Question 13. La surface a bord Sc est homéomorphe ¢ X'\ (D% UDZU---L DTZL)

ot X est l'une des surfaces S ou T?. Peut-on déterminer laquelle en utilisant
uniquement la caractéristique d’Euler?

My Solution. No, we cannot because we have x(S¢) = —4 = x(52) = x(T%).

Question 14. Révisez la notion de variété a bord. On remarque que S et C
sont des variétés de dimension 2 a bord et que w1 : S¢ — C' est une application
différentiable. Compter le nombre de composantes de bord de S¢ (i.e. le nombre
de composantes connexes de Sc ). Répondre alors au point précédent.

My Solution. To see that S¢ has smooth boundary, we can enlarge the outer
radius and reduce the value of € in C' then the boundary of Sc can be seen as
the locally homeomorphism preimage of smooth circles hence smooth as well.
m : S — C is the restriction to a regular submanifold of a smooth map between
two manifolds C2 and C and hence smooth again.

The preimage of a component in JC' is connected in S¢ since here we can
topologically view this covering map as p : z € S' — 22 € S' in complex plane.
Therefore, there are four components in 9S¢ and for previous question we then
know S¢ is homeomorphic to T3 := T2\ (D% L D2U D2 L Di)

Question 15. Si on considére Sc U S° U ST U S? alors il s’agit d’une variété
de dimension 2 homéomorphe a une de la liste ci-dessus. Laquelle?

My Solution. We have four homeomorphisms
1 :Se 22 T\ (f)% uDiuD2U f)g)
T :S" = D(i,¢), where i€ {1,2,3},

combine them we get S¢ U S U ST U S22 T2 := T2\ D2,
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