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Definitions

Barycenters

» Notion of mean for probability measures 1 on metric spaces (F, d)

P> Always exist in proper spaces (metric spaces whose bounded closed sets
are compact)

Wasserstein spaces (W(E), W)

» Metric spaces for optimal transport between probability measures on a Polish
space (a complete and separable metric space)

» Wasserstein spaces are Polish spaces.
Define W(u, E) := infzep W(u, dz).
z is a barycenter of p € W(E) iff  W(u,d,) = W(u, E)
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Wasserstein barycenters

Definition

Given a Polish space (E, d), the Wasserstein space WW(E), W) is also Polish, over
which we can construct the Wasserstein space (W(W(E)), W).

Barycenters o of measures P € W(W(E)) are called Wasserstein barycenters.
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Wasserstein barycenters

Definition

Given a Polish space (E, d), the Wasserstein space WW(E), W) is also Polish, over
which we can construct the Wasserstein space (W(W(E)), W).

Barycenters i of measures P € W(W(FE)) are called Wasserstein barycenters.

Remark
By definition, P is a probability measure on W(E), its
barycenter 1 is thus a probability measure on E.
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Wasserstein barycenters

Definition

Given a Polish space (E, d), the Wasserstein space WW(E), W) is also Polish, over
which we can construct the Wasserstein space (W(W(E)), W).

Barycenters @ of measures P € W(W(E)) are called Wasserstein barycenters.

Example (Displacement interpolation)

Consider the earth surface (£, d) with two uniform

measures p, v supported on two regions. We simulate
1 1 , .

the barycenter of 54, + 50, by discrete points.

n + B barycenter ﬁ (1lama)
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Wasserstein barycenters

Definition

Given a Polish space (E, d), the Wasserstein space WW(E), W) is also Polish, over
which we can construct the Wasserstein space (W(W(E)), W).

Barycenters @ of measures P € W(W(E)) are called Wasserstein barycenters.

Existence [Le Gouic and Loubes, 2017]

Assuming that (FE, d) is a proper space, Wasserstein
barycenters in W(E) always exist.
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Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Ao, ..

.y Ap such that 37 | A, = 1.

Given n measures fi1, {2, . . ., [ln, ONE Can construct a barycenter 7z of >.7" | A\;8,,, as follows.
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1. Let B: E™ — E be a measurable map (barycenter selection map) sending
(21,22, ...,2,) to a barycenter of Y 7" | \; 0.
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Fix a proper space (E, d) and n positive real numbers A1, A2, ..., A, such that >°7" | \; = 1.
Given n measures fi1, {2, . . ., [ln, ONE Can construct a barycenter 7z of >.7" | A\;8,,, as follows.

Construction of i := By

1. Let B: E™ — E be a measurable map (barycenter selection map) sending
(21,22, ...,2,) to a barycenter of Y 7" | \; 0.

2. Let v be a measure (multi-marginal optimal transport plan) on E" s.t.

/n W Nide, B dy(,...,a) = inf/n W Xids, B)*d0(z, ..., 3),

0co
i=1 € i=1

where O is the set of measures on E™ with marginals p1, o, ..., 1, and vy € ©.
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Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, A2, ..., A, such that >°7" | \; = 1.
Given n measures fi1, {2, . . ., [ln, ONE Can construct a barycenter 7z of >.7" | A\;8,,, as follows.

Construction of i := By

1. Let B: E™ — E be a measurable map (barycenter selection map) sending
(21,22, ...,2,) to a barycenter of Y 7" | \; 0.

2. Let v be a measure (multi-marginal optimal transport plan) on E" s.t.

/n W Nide, B dy(,...,a) = inf/n W Xids, B)*d0(z, ..., 3),

i=1 b<o i=1
where O is the set of measures on E™ with marginals p1, o, ..., 1, and vy € ©.

Corollary: (B, proj;)4~ is an optimal transport plan between fi and f;.
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Properties of Wasserstein barycenter

Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be proper space. Given a sequence of measures P; € W(W(E)) with
barycenters fi;, if W(P;,I?) — 0, then [i; converges to a barycenter of P up to
extracting a subsequence.

Remark
Construction for finitely many measures 4 consistency = general existence.

Indeed, we rely on the consistency to investigate general barycenters.
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Properties of Wasserstein barycenter

Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be proper space. Given a sequence of measures P; € W(W(E)) with
barycenters fi;, if W(P;,IP) — 0, then [i; converges to a barycenter of P up to
extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, d) be a Riemannian manifold. If P € W(W(M)) gives mass to the set of
absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Agueh and Carlier, 2011]

Let p1, pto, ..., uy be n probability measures on R™. If py is absolutely continuous
with bounded density function, then the unique barycenter of Y " | X; 0, is also
absolutely continuous.
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Properties of Wasserstein barycenter

Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be proper space. Given a sequence of measures P; € W(W!(E)) with
barycenters fi;, if W(P;,IP) — 0, then [i; converges to a barycenter of P up to
extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, d) be a Riemannian manifold. If P € W(W(M)) gives mass to the set of
absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Kim and Pass, 2017]

Let (M, d) be a compact Riemannian manifold. If P € W(W(M)) gives mass to a set
of absolutely continuous measures with uniformly bounded density functions, then its
unique barycenter is absolutely continuous.
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How to prove absolute continuity

(a.c stands for absolutely continuous)

Absolute continuity and compactness [Kim and Pass, 2017]

Let (M, d) be a compact manifold. If P € W(W(M)) gives mass to a set of a.c
measures with uniformly bounded density functions, then its barycenter is a.c.

Absolute continuity and Ricci curvature bound [Ma, 2023]
Let (M, d) be a complete manifold with a lower Ricci curvature bound.

If P e W(W(M)) gives mass to the set of a.c measures, then its barycenter 1z is a.c.
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]
Let (M, d) be a complete manifold with a lower Ricci curvature bound.

If P € WOWV(M)) gives mass to the set of a.c measures, then its barycenter [z is a.c.
Sketch of proof, when P = >"" | \;4,, and each p; has compact support
Similar to the case of displacement interpolation: locally Lipschitz + compactness

1. When pq is a.c and pu;'s for 2 < ¢ < n are Dirac measures, the optimal transport
map from @ to puy is locally Lipschitz. (See details later)
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Absolute continuity and Ricci curvature bound [Ma, 2023]
Let (M, d) be a complete manifold with a lower Ricci curvature bound.

If P € WOWV(M)) gives mass to the set of a.c measures, then its barycenter [z is a.c.
Sketch of proof, when P = >"" | \;4,, and each p; has compact support
Similar to the case of displacement interpolation: locally Lipschitz + compactness

1. When pq is a.c and pu;'s for 2 < ¢ < n are Dirac measures, the optimal transport
map from @ to puy is locally Lipschitz. (See details later)

2. Apply a divide-and-conquer (conditional measure) argument for the case
when p;,2 < ¢ < n are discrete measures to retain the Lipschitz estimate.

3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate
for approximating sequences of general u;, 1 < 2 < n.
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, d) be a complete manifold with a lower Ricci curvature bound.
If P e WOV(M)) gives mass to the set of a.c measures, then its barycenter fi is a.c.

Pass to the general case of P by consistency

Hessian equality for Wasserstein barycenters: let @ be the unique a.c barycenter of
Y1 Aidy, and let exp(—V¢;) be the optimal transport map between 7z and 15, then

n
Z A; Hess ¢; = 0.
i=1
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, d) be a complete manifold with a lower Ricci curvature bound.
If P e W(OWV(M)) gives mass to the set of a.c measures, then its barycenter fi is a.c.

Pass to the general case of PP by consistency

Hessian equality for Wasserstein barycenters: let ;i be the unique a.c barycenter of
Yo Aidy, and let exp(—V¢;) be the optimal transport map between 7z and p;, then

n
Z A; Hess ¢; > 0.
i=1

Approach of [Kim and Pass, 2017]: plug Monge-Ampére equations into the above
inequality and bound the density of &z by a uniform upper bound of those of p;'s.
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, d) be a complete manifold with a lower Ricci curvature bound.
If P e W(OWV(M)) gives mass to the set of a.c measures, then its barycenter fi is a.c.

Pass to the general case of PP by consistency

Hessian equality for Wasserstein barycenters: let ;i be the unique a.c barycenter of
Yo Aidy, and let exp(—V¢;) be the optimal transport map between 7z and p;, then

n
Z A; Hess ¢; = 0.
i=1

Our approach [Ma, 2023]: define a novel class of displacement functionals exploiting
the equality, and bound them from above with the help of Souslin space theory.
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Absolute continuity of Wasserstein barycenters of finitely many measures

Fix P =", \;d,,;, where i is a.c with compact support and p; = 4, for i > 2.
Its unique barycenter is ;i = B4y, where B is a measurable barycenter selection map
and v = p1 ® 04, ® - - - d5, is the unique coupling of its marginals.
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Its unique barycenter is ;i = B4y, where B is a measurable barycenter selection map
and v = p1 ® 04, ® - - - d5, is the unique coupling of its marginals.

c-conjugating formulation of B
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<= z reaches the infimum of 2X\jinfycp{c(z1,v) — 9(y)}

3. Define X = supp(p1) and Y the set of barycenters of v when z; runs through X.
The map g is smooth on Y [Kim and Pass, 2015]. Set F := exp(—Vy).

z€ Y and 2y = F(z) <= x € X and z is a barycenter of v
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Absolute continuity of Wasserstein barycenters of finitely many measures

Fix P =", \;d,,;, where i is a.c with compact support and p; = 4, for i > 2.
Its unique barycenter is ;i = B4y, where B is a measurable barycenter selection map
and v = p1 ® 04, ® - - - d5, is the unique coupling of its marginals.

c-conjugating formulation of B
1. Define ¢(z,y) := 3d(z,y)? and g(y) = —)\% o c(zi,y)
2. Given z; € M, z is a barycenter of v := """ | \; 0,
<= z reaches the infimum of 2X\jinfycp{c(z1,v) — 9(y)}

3. Define X = supp(p1) and Y the set of barycenters of v when z; runs through X.
The map g is smooth on Y [Kim and Pass, 2015]. Set F := exp(—Vy).

z€ Y and 2y = F(z) <= x € X and z is a barycenter of v

Conclusion: Fiufi = p1. Since F'is Lipschitz, fi is a.c.
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Displacement functionals for Wasserstein barycenters

Assumptions and notation for the functional G : f - Vol — [, G(f)d Vol

1. M, m~dimensional manifold with lower Ricci curvature bound —K < 0.

2. p;, 1 <4 < n, compactly supported measures which are a.c for indices 1 < 7 < k.

3. f, density of the barycenter fz of P:= """ | X\;dp;;  ¢gi, 1 < i <k, density of p;.

4. @G, a function on R with G(0) = 0 such that H(z) := G(e%)e® is C! with
non-negative derivatives bounded above by Ly > 0.
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Displacement functionals for Wasserstein barycenters
Assumptions and notation for the functional G : f - Vol = [, G(f)d Vol

1. M, m-dimensional manifold with lower Ricci curvature bound —K < 0.
2. i1 < i< n, compactly supported measures which are a.c for indices 1 < i < k.
3. f, density of the barycenter 1 of P:=>"" | X\;0,.;; ¢s, 1 < i <k, density of y;.
4. @, a function on RT with G(0) = 0 such that H(z) := G(e®)e~* is C! with non-negative
derivatives bounded above by Ly > 0.
Define A := 3% | \;, then

k
_ A Ly K Ly
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Displacement functionals for Wasserstein barycenters
Assumptions and notation for the functional G : f - Vol = [, G(f)d Vol

1. M, m-dimensional manifold with lower Ricci curvature bound —K < 0.

2. i1 < i< n, compactly supported measures which are a.c for indices 1 < i < k.

3. f, density of the barycenter 1 of P:=>"" | X\;0,.;; ¢s, 1 < i <k, density of y;.

4. G, afunction on Rt with G(0) = 0 such that H(z) := G(e®)e~ is C* with non-negative
derivatives bounded above by Ly > 0.

Define A := 3% | \;, then
Z 26 (u W(P,8z)% + [U(m2 +2m).
2A

Special case: curvature—dlmen5|on condition
Take G(z) :=zlogz, n=k=2, A= Ly =1. Set A =)\ and Ent = G, then

2
m

2

K
Ent(z) < AEnt(p1) + (1 — X) Ent(pue) + ?/\(1 — N W (1, p2)® +— +m.
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Displacement functionals for Wasserstein barycenters
Assumptions and notation for the functional G : f - Vol = [, G(f)d Vol

1. M, m-dimensional manifold with lower Ricci curvature bound —K < 0.

2. i1 < i< n, compactly supported measures which are a.c for indices 1 < i < k.

3. f, density of the barycenter 1 of P:=>"" | X\;0,.;; ¢s, 1 < i <k, density of y;.

4. G, afunction on Rt with G(0) = 0 such that H(z) := G(e®)e~ is C* with non-negative
derivatives bounded above by Ly > 0.

Define A := 3% | \;, then

Z Aigu W(P, 5,)2 + gX(m2+2m).

Difference from cIa55|caI displacement functionals

Gradient flow theory (first-order) and displacement convexity (second-order) gives that

G(n) > G(7) + [ Ao log ) dji = 5 WG, 1< i<k
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Preservation of absolute continuity when passing to the limit

Reminder of the problem setting

We approximate a general measure P € W(W(M)) with P;. After proving that the
barycenter fi; of P; is a.c, how to show that the barycenter v = lim jz; of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures

1. Assume G is in addition super-linear and convex, then G is lower semi-continuous;
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Preservation of absolute continuity when passing to the limit

Reminder of the problem setting
We approximate a general measure P € W(W(M)) with P;. After proving that the

barycenter fi; of P; is a.c, how to show that the barycenter v = lim jz; of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures

1.
2.
3.

Assume G is in addition super-linear and convex, then G is lower semi-continuous;
Bound {G(fz;)};>1 from above, for which we use the displacement inequality;

By choosing the sequence IP; properly, it reduces to show that [P gives mass to a
B(G, L) set, the set of a.c measures whose values under G are bounded by L > 0;

4. Compact sets w.r.t. the o(L!, L) topology are B(G, L) sets;

Souslin space theory implies that several different topologies of a.c measures
generate the same Borel sets, on which P is a Radon measure.
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Justifications for the generalized displacement functionals

k
)\ LHK Ly

Step 1, change of variables

Denote by F; the optimal transport map from @ to p;, by Jac F; the Jacobian of F;.
Since f = g(F;) Jac Fy,  G(u) = [, H(log f + I;) d i, where I; := —log Jac F;.
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Step 1, change of variables

Denote by F; the optimal transport map from [ to p;, by Jac F; the Jacobian of Fj.
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k
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Step 1, change of variables

Denote by F; the optimal transport map from [ to u;, by Jac F; the Jacobian of Fj.
Since f = g(F;) Jac Fys,  G(us) = [, H(log f + I;) d i, where I; := —log Jac F;.
By McCann-Brenier theorem, F; = exp(—V¢;) with ¢; a c-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for dexp(—V¢;) implies [; > A¢; — K||[V;||?/2 for 1 < i < k.
Second variation formula implies m + m?/2 > A¢; — K||V;]|?/2. (cordero-Erausquin et al., 2001]
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Justifications for the generalized displacement functionals

<Z ‘G LHK W(P, 5,)2 +§—A(m +2m)

Step 1, change of varlables

Denote by F; the optimal transport map from [ to p;, by Jac F; the Jacobian of Fj.
Since f = g(F;) Jac Fys,  G(ui) = [, H(log f + I;) d i, where I; := —log Jac F}.

By McCann-Brenier theorem, F; = exp(—V¢;) with ¢; a c-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for dexp(—V¢;) implies [; > A¢; — K||[V;||*/2 for 1 < i < k.
Second variation formula implies m + m?/2 > A¢; — K||V;]|?/2. cordero Erausquin et a1, 2001]
Step 3, apply assumptions on H

H(log f + ;) — H(log f) > Lir(A¢; — K|V $4]|*/2) — L (m + m?/2).

Step 4, integrate and apply the Hessian equality

The Hessian equality " ; \; Hessy ¢; = 0 implies Y7 | X\; Ag;(z) = 0.
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