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Definitions see the blackboard &

Barycenters

» Notion of mean for probability measures 1 on metric spaces (F, d)

Wasserstein spaces (W(E), W)

» Metric spaces for optimal transport between probability measures on a Polish
space (a complete and separable metric space)
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Definitions

Barycenters

» Notion of mean for probability measures 1 on metric spaces (F, d)

> Always exist in proper spaces (metric spaces whose bounded closed sets
are compact)

Wasserstein spaces (W(E), W)

» Metric spaces for optimal transport between probability measures on a Polish
space (a complete and separable metric space)

» Wasserstein spaces are Polish spaces.
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Wasserstein barycenters

Definition

Given a Polish space (FE, d), the Wasserstein space (W(E), W) is also Polish, over
which we can construct the Wasserstein space (W(W(E)), W).

Barycenters i of measures P € W(W!(E)) are called Wasserstein barycenters.
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Wasserstein barycenters

Definition

Given a Polish space (F, d), the Wasserstein space (W(FE), W) is also Polish, over
which we can construct the Wasserstein space (W(W(E)), W).

Barycenters i of measures P € W(W(E)) are called Wasserstein barycenters.

Remark
By definition, P is a probability measure on W(E), its
barycenter [ is thus a probability measure on FE.
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Wasserstein barycenters

Definition

Given a Polish space (FE, d), the Wasserstein space (W(FE), W) is also Polish, over
which we can construct the Wasserstein space (W(W(E)), W).

Barycenters i of measures P € W(W(E)) are called \Wasserstein barycenters.

Example (Displacement interpolation)

Consider the earth surface (E, d) with two uniform
measures p, v supported on two regions. We simulate
the barycenter of %5ﬂ + %61, by discrete points.

N+ B 22t o (11ama)
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Wasserstein barycenters

Definition

Given a Polish space (E, d), the Wasserstein space (W(E), W) is also Polish, over
which we can construct the Wasserstein space (W(W(E)), W).

Barycenters i of measures P € W(W(E)) are called \Wasserstein barycenters.

Existence [Le Gouic and Loubes, 2017]
Assuming that (E, d) is a proper space, Wasserstein
barycenters in W(E) always exist.
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Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Xa, ..., A, such that >, \; = 1.
Given n measures fi1, fi2, . . . , [n, ONE can construct a barycenter f of > | X\;d,,, as follows.
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Construction of i := By

1. Let B: E™ — E be a measurable map (barycenter selection map) sending
(@1, 22,...,T,) to a barycenter of 7" | A; 0y,
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Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Xa, ..., A, such that >, \; = 1.
Given n measures fi1, fi2, . . . , [n, ONE can construct a barycenter f of > | X\;d,,, as follows.

Construction of i := By

1. Let B: E™ — E be a measurable map (barycenter selection map) sending
(@1, 22,...,T,) to a barycenter of 7" | A; 0y,

2. Let v be a measure (multi-marginal optimal transport plan) on E” s.t.

d~ = inf do with ¢\(z1,...,2,) := inf Y N\ d(z,y)2,
/nCA ol elél@/nCA with ex(z1,. .., zp) ylgE; (25, 9)

where O is the set of measures on E™ with marginals p1, 2, ..., i, and v € ©.

3/8



Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Aa, ..., A, such that > | \; = 1.
Given n measures i, f2, - - -, fby, ONe can construct a barycenter iz of 2?21 Ai 0y, as follows.

Why 1t = B4 is a barycenter?

Not f t st
SR

Recall

B sends = (z1,...,2,) to a
barycenter of Y7 | A; 0g;;

~ has marginals 1, ..., ty.




Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Aa, ..., A, such that > | \; = 1.
Given n measures i, f2, - - -, fby, ONe can construct a barycenter iz of 2?21 Ai 0y, as follows.

Why 1t = B4 is a barycenter?
Not f t st
S <3 o

Recall
cx(Z) is the barycenter cost :/ ex(Z) d(Z)
infyep Y iy Ai d(zi,y)?
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Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Aa, ..., A, such that > | \; = 1.
Given n measures i, f2, - - -, fby, ONe can construct a barycenter iz of 2?21 Ai 0y, as follows.

Why 1t = B4 is a barycenter?

Not f t st
SR

Recall
~ is an optimal plan w.r.t. ¢y; :/ ex(f)dy(Z) < Ecex(Xy, ..., Xp)
Choose r.v. X; with law p;.
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Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Aa, ..., A, such that > | \; = 1.
Given n measures i, f2, - - -, fby, ONe can construct a barycenter iz of 2?21 Ai 0y, as follows.

Why 1t = B4 is a barycenter?

Not f t st
SR

Notation
X is a new r.v. with arbitrarily :/ cx(Z) dy(Z) < Eex(X,..., Xy)
chosen law v; the coupling nn
(Xi, X) could be optimal. SEZ)\id(Xi,X)Q
L i=1
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Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Aa, ..., A, such that > | \; = 1.
Given n measures i, f2, - - -, fby, ONe can construct a barycenter iz of 2?21 Ai 0y, as follows.

Why 1t = B4 is a barycenter?

Not f t st
SR

Conclusion
Choose (X;, X) to be optimal. :/ ex(Z) dy(Z) <Eexn(Xy,..., Xn)
[t is a barycenter since v is "
arbitrary. <EZ)\ d(X;, X)? Z/\ W (i, v
L =1
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Structure of Wasserstein barycenters

Fix a proper space (E, d) and n positive real numbers A1, Aa, ..., A, such that > | \; = 1.
Given n measures i, f2, - - -, fby, ONe can construct a barycenter iz of 2?21 Ai 0y, as follows.

Why 1t = B4 is a barycenter?

Notes of current step “ _ - o o
| Notes of corrent siep [N PR o [ e 5@ 0@
i=1 i=1 "

Corollary

Set v = [1; (proj;, B)u is
thus an optimal transport plan

between p; and [. <EZ)\ d( Xz,X Zx\ Wi, o
=1

:/n ex(Z) dy(F) <Ecex(Xy, ..., X,)
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Properties of Wasserstein barycenter

Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be a proper space. Given a sequence of measures P; € W(W(E)) with
barycenters fi;, if W(P;,I?) — 0, then [i; converges to a barycenter of P up to
extracting a subsequence.

Remark
Construction for finitely many measures + consistency = general existence.

Indeed, we rely on the consistency to investigate general barycenters.
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Consistency [Le Gouic and Loubes, 2017]

Let (E, d) be a proper space. Given a sequence of measures P; € W(W(E)) with
barycenters fi;, if W(P;,I?) — 0, then [i; converges to a barycenter of P up to
extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, dy) be a Riemannian manifold. If P € W(W(M)) gives mass to the set of
absolutely continuous measures, then it has a unique barycenter.
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Properties of Wasserstein barycenter

Consistency [Le Gouic and Loubes, 2017]

Let (£, d) be a proper space. Given a sequence of measures P; € W(W(E)) with
barycenters fi;, if W(IP;,I?) — 0, then [i; converges to a barycenter of P up to
extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, dy) be a Riemannian manifold. If P € W(A/(M)) gives mass to the set of
absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Agueh and Carlier, 2011]

Let p1, po, ..., uy be n probability measures on R™. If u; is absolutely continuous
with bounded density function, then the unique barycenter of > 7 | A; 4, is also
absolutely continuous.
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Properties of Wasserstein barycenter

Consistency [Le Gouic and Loubes, 2017]

Let (£, d) be a proper space. Given a sequence of measures P; € W(W(E)) with
barycenters fi;, if W(IP;,I?) — 0, then [i; converges to a barycenter of P up to
extracting a subsequence.

Uniqueness [Kim and Pass, 2017]

Let (M, dy) be a Riemannian manifold. If P € W(A/(M)) gives mass to the set of
absolutely continuous measures, then it has a unique barycenter.

Absolute continuity [Kim and Pass, 2017]

Let (M, dy) be a compact Riemannian manifold. If P € W(W(M)) gives mass to a set
of absolutely continuous measures with uniformly bounded density functions, then its
unique barycenter is absolutely continuous.
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How to prove absolute continuity

(a.c stands for absolutely continuous)

Absolute continuity and compactness [Kim and Pass, 2017]

Let (M, dy) be a compact Riemannian manifold. If P € W(W(M)) gives mass to a set
of a.c measures with uniformly bounded density functions, then its barycenter is a.c.

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, d,) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P e W(W(M)) gives mass to the set of a.c measures, then its barycenter 1 is a.c.

5/8



How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, dy) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P e WOV(M)) gives mass to the set of a.c measures, then its barycenter fi is a.c.
Sketch of proof, when P = >"" | \;d,,, and each y; has compact support
Similar to the case of displacement interpolation: locally Lipschitz + compactness

1. When p is a.c and p;'s for 2 < ¢ < n are Dirac measures, the optimal transport
map from [ to uq is locally Lipschitz. (See details later)
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2. Apply a divide-and-conquer (conditional measure) argument for the case
when p;,2 < ¢ < n are discrete measures to retain the Lipschitz estimate.

5/8



How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, dy) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P e WOV(M)) gives mass to the set of a.c measures, then its barycenter fi is a.c.
Sketch of proof, when P = >"" | \;d,,, and each y; has compact support
Similar to the case of displacement interpolation: locally Lipschitz + compactness

1. When p is a.c and p;'s for 2 < ¢ < n are Dirac measures, the optimal transport
map from [ to uq is locally Lipschitz. (See details later)

2. Apply a divide-and-conquer (conditional measure) argument for the case
when p;,2 < ¢ < n are discrete measures to retain the Lipschitz estimate.

3. Compactness and Rauch comparison theorem imply a uniform Lipschitz estimate
for approximating sequences of general p;, i <2 < n.
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, dy) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P e WOWV(M)) gives mass to the set of a.c measures, then its barycenter [ is a.c.
Pass to the general case of [P by consistency

Hessian equality for Wasserstein barycenters: let & be the unique a.c barycenter of
> Aidy, and let exp(—V¢;) be the optimal transport map between 7z and 1, then

z”: A; Hess ¢; = 0.

i=1
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, dy) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P e WOV(M)) gives mass to the set of a.c measures, then its barycenter fi is a.c.

Pass to the general case of P by consistency

Hessian equality for Wasserstein barycenters: let [z be the unique a.c barycenter of
> Xidy, and let exp(—V¢;) be the optimal transport map between 7z and p;, then

n
Z A; Hess ¢; > 0.
i=1

Approach of [Kim and Pass, 2017]: apply change of variable formula in the inequality
and bound the density of iz by a uniform upper bound of those of u;'s.
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How to prove absolute continuity

Absolute continuity and Ricci curvature bound [Ma, 2023]

Let (M, dy) be a complete Riemannian manifold with a lower Ricci curvature bound.
If P e WOV(M)) gives mass to the set of a.c measures, then its barycenter fi is a.c.

Pass to the general case of P by consistency

Hessian equality for Wasserstein barycenters: let [z be the unique a.c barycenter of
> Xidy, and let exp(—V¢;) be the optimal transport map between 7z and p;, then

Z A; Hess ¢; = 0.

i=1

Our approach [Ma, 2023]: define nice functionals admitting finite values only for a.c
measures, and bound them from above with the help of Souslin space theory.
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Absolute continuity of Wasserstein barycenters of finitely many measures

Fix P =", A\i 0y, where i is a.c with compact support and j; = 0, for i > 2.
Its unique barycenter is [t = By, where B is a measurable barycenter selection map
and v = p1 ® 0z, ® - - - d, is the unique coupling of its marginals.
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c-conjugating formulation of B
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2. Given z; € M, z is a barycenter of v :=>"7" | \; 0,
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c-conjugating formulation of B
1. Define c¢(z,y) := 3dy(z,y)* and h(y) := —)\—11 Yoo Nic(mi, y)
2. Given z; € M, z is a barycenter of v :=>"" | A\;0;, c-conjugation of &

<= 2z reaches the infimum of 2X\iinf,cp{c(z1,y) — h(y)}
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Absolute continuity of Wasserstein barycenters of finitely many measures

Fix P =", A\i 0y, where i is a.c with compact support and j; = 0, for i > 2.
Its unique barycenter is [t = By, where B is a measurable barycenter selection map
and v = p1 ® 0z, ® - - - d, is the unique coupling of its marginals.

c-conjugating formulation of B
1. Define c¢(z,y) := 3dy(z,y)* and h(y) := —)\—11 Yoo Nic(mi, y)
2. Given z; € M, z is a barycenter of v :=>"7" | \; 0,
<= z reaches the infimum of 2X\iinfycp{c(z1,y) — h(y)}

3. Define X = supp(p1) and Y the set of barycenters of v when z; runs through X.
The map h is smooth on Y [Kim and Pass, 2015]. Set F' := exp(—Vh).

z€ Y and 21 = F(2) <= 1 € X and z is a barycenter of v
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Absolute continuity of Wasserstein barycenters of finitely many measures

Fix P =", A\i 0y, where i is a.c with compact support and j; = 0, for i > 2.
Its unique barycenter is [t = By, where B is a measurable barycenter selection map
and v = p1 ® 0z, ® - - - d, is the unique coupling of its marginals.

c-conjugating formulation of B
1. Define c¢(z,y) := 3dy(z,y)* and h(y) := —)\—11 Yoo Nic(mi, y)
2. Given z; € M, z is a barycenter of v :=>"7" | \; 0,
<= z reaches the infimum of 2X\iinfycp{c(z1,y) — h(y)}

3. Define X = supp(p1) and Y the set of barycenters of v when z; runs through X.
The map h is smooth on Y [Kim and Pass, 2015]. Set F' := exp(—Vh).

z€ Y and 21 = F(2) <= 1 € X and z is a barycenter of v

Conclusion: Fum = p1. Since F'is Lipschitz, v is a.c.
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Displacement functionals for Wasserstein barycenters

Assumptions and notation for the functional G : f - Vol — [, G(f)d Vol
1. m =dim(M), Ricyy > —(m —1)K gu; P =7 A\i 0,0 ps has compact support.
2. pu; = g; Vol,1 < i < k are a.c; the unique barycenter z = f Vol of P is a.c.

3. G:R* — R with G(0) = 0 such that H(z) := G(e%)e " is C! with non-negative
derivatives bounded above by Ly > 0.
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Displacement functionals for Wasserstein barycenters
Assumptions and notation for the functional G : f - Vol = [, G(f)d Vol
1. m:=dim(M), Ricyy > —(m — 1)K gar; P:= >0 \i 0,0 pts has compact support.
2. pu; = g; Vol,1 < ¢ <k are a.c; the unique barycenter 11 = f Vol of P is a.c.
3. G:RT — R with G(0) = 0 such that H(z) := G(e*)e " is C* with non-negative
derivatives bounded above by Ly > 0.
Define A := >_¥ | \,, then

k
_ A Ly K Ly
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Displacement functionals for Wasserstein barycenters
Assumptions and notation for the functional G : f - Vol = [, G(f)d Vol

1. m:=dim(M), Ricyy > —(m — 1)K gar; P:= >0 \i 0,0 pts has compact support.

2. pu; = g; Vol,1 < ¢ <k are a.c; the unique barycenter 11 = f Vol of P is a.c.

3. G:RT — R with G(0) = 0 such that H(z) := G(e*)e " is C* with non-negative
derivatives bounded above by Ly > 0.

Define A := 3% | \;, then

<Zg

Special case: curvature—dlmenS|on condition
Take G(z) :=zlogz, n=k=2, A= Ly =1. Set A =)\ and Ent = G, then

L K ‘
H m? + 2m) .

L
)2 H
WP, 67) + L

Nl_

K
Ent(zz) < AEnt(p1) + (1 — \) Ent(ug) + 5)\(1 — N W (1, p2)? ttm.
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Displacement functionals for Wasserstein barycenters
Assumptions and notation for the functional G : f - Vol = [, G(f)d Vol

1. m:=dim(M), Ricyy > —(m — 1)K gar; P:= >0 \i 0,0 pts has compact support.

2. pu; = g; Vol,1 < ¢ <k are a.c; the unique barycenter 11 = f Vol of P is a.c.

3. G:RT — R with G(0) = 0 such that H(z) := G(e*)e " is C* with non-negative
derivatives bounded above by Ly > 0.

Define A := 3% | \;, then
<§: ZiG(u W(P, 67)2 5 (m* +2m) .

Difference from classmal displacement functionals

Gradient flow theory (first-order) and displacement convexity (second-order) gives that

G(n) > 0(n)+ | Ao (logf)di— 45 Wl 1< i<k
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Preservation of absolute continuity when passing to the limit

Reminder of the problem setting

We approximate a general measure P € W(W(M)) with P;. After proving that the
barycenter 7i; of IP; is a.c, how to show that the barycenter i = lim fz; of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures

1. Assume G is in addition super-linear and convex, then G is lower semi-continuous;
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Preservation of absolute continuity when passing to the limit

Reminder of the problem setting
We approximate a general measure P € W(W(M)) with P;. After proving that the

barycenter 7i; of IP; is a.c, how to show that the barycenter i = lim fz; of P is also a.c?

Use displacement functionals G admitting finite values only for a.c measures

1.
2.
3.

Assume G is in addition super-linear and convex, then G is lower semi-continuous;
Bound {G(fz;)}j>1 from above, for which we use the displacement inequality;

By choosing the sequence IP; properly, it reduces to show that [P gives mass to a
B(G, L) set, the set of a.c measures whose values under G are bounded by L > 0;

4. Compact sets w.r.t. the o(L!, L) topology are B(G, L) sets;

5. Souslin space theory implies that several different topologies of a.c measures

generate the same Borel sets, on which P is a Radon measure.
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Justifications for the generalized displacement functionals

k
A LHK Ly
Z::K ni) + =55 WP, 6,)2 +ﬁ(m + 2m)
Step 1, change of variables

Denote by F; the optimal transport map from @ to p;, by Jac F; the Jacobian of Fj.
Since f = g(F;) Jac F;, G(uq) = [, H(log f + I;) d i, where I; :== —log Jac F;.
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Step 1, change of variables
Denote by F; the optimal transport map from @ to p;, by Jac F; the Jacobian of Fj.
Since f = g(F;) Jac F;, G(uq) = [, H(log f + I;) d i, where I; :== —log Jac F;.
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Justifications for the generalized displacement functionals

(2 + 2m)

k
A L LuK )
;K i) + 5 W, 0m)* + S

2A
Step 1, change of variables

Denote by F; the optimal transport map from [ to u;, by Jac F; the Jacobian of Fj.
Since f = g(F;) Jac Fys,  G(us) = [, H(log f + I;) d i, where I; := —log Jac F;.
By McCann-Brenier theorem, F; = exp(—V¢;) with ¢; a c-concave function.

Step 2, apply Ricci curvature bound
Jacobi equation for dexp(—V¢;) implies [; > A¢; — K||[V;||?/2 for 1 < i < k.
Second variation formula Imp|les m 4+ m2/2 Z A¢1 — KHVQSzHQ/2 [Cordero-Erausquin et al., 2001]



Justifications for the generalized displacement functionals

k
_ Ai LuK A
< E il ) ZHT _ il
Step 1, change of variables

Denote by F; the optimal transport map from [ to p;, by Jac F; the Jacobian of F;.
Since f = g(F;) Jac Fy,  G(u) = [, H(log f + I;) d i, where I; := —log Jac F;.
By McCann-Brenier theorem, F; = exp(—V¢;) with ¢; a c-concave function.

Step 2, apply Ricci curvature bound
Jacobi equation for d exp(—V¢;) implies [; > A¢; — K||V;||?/2 for 1 < i < k.
Second variation formula |mp||e5 m 4+ m2/2 Z A¢’L — K‘|V¢ZH2/2 [Cordero-Erausquin et al., 2001]

Step 3, apply assumptions on H
H(log f + ;) — H(log f) > Ly (A¢; — K|V ||?/2) — L (m + m?/2).



Justifications for the generalized displacement functionals
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Step 1, change of variables

Denote by F; the optimal transport map from [ to u;, by Jac F; the Jacobian of Fj.
Since f = g(F;) Jac Fy,  G(us) = [, H(log f + I;) d i, where I; := —log Jac F}.
By McCann-Brenier theorem, F; = exp(—V¢;) with ¢; a c-concave function.

Step 2, apply Ricci curvature bound

Jacobi equation for d exp(—V¢;) implies I; > A¢; — K||Vi||?/2 for 1 < i < k.
Second variation formula implies m + m?/2 > Ag; — K||V;]|?/2. CorderoErausquin et al., 2001]
Step 3, apply assumptions on H

H(logf +1;) — H(log f) > Lu(A¢i — K||Vi[|*/2) — Lu(m + m?/2).

Step 4, integrate and apply the Hessian equality

The Hessian equality " ; \; Hessy ¢; = 0 implies >°7"  X\; Agy(z) =0
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